1,943 research outputs found

    Suppression of local haze variations in MERIS images over turbid coastal waters for retrieval of suspended sediment concentration

    Get PDF
    Atmospheric correction over turbid waters can be problematic if atmospheric haze is spatially variable. In this case the retrieval of water quality is hampered by the fact that haze variations could be partly mistaken for variations in suspended sediment concentration (SSC). In this study we propose the suppression of local haze variations while leaving sediment variations intact. This is accomplished by a multispectral data projection (MDP) method based on a linear spectral mixing model, and applied prior to the actual standard atmospheric correction. In this linear model, the hazesediment spectral mixing was simulated by a coupled water-atmosphere radiative transfer (RT) model. As a result, local haze variations were largely suppressed and transformed into an approximately homogenous atmosphere over the MERIS top-of-atmosphere (TOA) radiance scene. The suppression of local haze variations increases the number of satellite images that are still suitable for standard atmospheric correction processing and subsequent water quality analysi

    Estimating specific inherent optical properties of tropical coastal waters using bio-optical model inversion and in situ measurements: case of the Berau estuary, East Kalimantan, Indonesia

    Get PDF
    Specific inherent optical properties (SIOP) of the Berau coastal waters were derived from in situ measurements and inversion of an ocean color model. Field measurements of water-leaving reflectance, total suspended matter (TSM), and chlorophyll a (Chl a) concentrations were carried out during the 2007 dry season. The highest values for SIOP were found in the turbid waters, decreasing in value when moving toward offshore waters. The specific backscattering coefficient of TSM varied by an order of magnitude and ranged from 0.003 m2 g-1, for clear open ocean waters, to 0.020 m2 g-1, for turbid waters. On the other hand, the specific absorption coefficient of Chl a was relatively constant over the whole study area and ranged from 0.022 m2 mg-1, for the turbid shallow estuary waters, to 0.027 m2 mg-1, for deeper shelf edge ocean waters. The spectral slope of colored dissolved organic matter light absorption was also derived with values ranging from 0.015 to 0.011 nm-1. These original derived values of SIOP in the Berau estuary form a corner stone for future estimation of TSM and Chl a concentration from remote sensing data in tropical equatorial water

    High-resolution methods for fluorescence retrieval from space

    Get PDF
    The retrieval from space of a very weak fluorescence signal was studied in the O2A and O2B oxygen atmospheric absorption bands. The accuracy of the method was tested for the retrieval of the chlorophyll fluorescence and reflectance terms contributing to the sensor signal. The radiance at the top of the atmosphere was simulated by means of a commercial radiative-transfer program at a high resolution (0.1 cm-1). A test data set was generated in order to simulate sun-induced chlorophyll fluorescence at the top of the canopy. Reflectance terms were spectrally modeled using cubic splines and fluorescence by means of the sum of two Voigt functions. Sensor radiance residual minimization was performed in the presence of a multiplicative noise, thus ensuring that the sensor simulations were realistic. The study, which focused on the possibility of retrieving fluorescence with an accuracy better than 10%, was performed for instrument resolutions ranging from about 0.4 cm-1 to 2 cm-1 in order to test the algorithm for the characteristics of existing and planned hyper-spectral sensors. The algorithm was also used to retrieve fluorescence in the single O2A band at the OCO and TANSO-FTS instrument spectral resolution

    Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data

    Get PDF
    The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l-1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of suspended sediment concentration (SSC) showed a great limitation in that only low to moderate concentrations (up to 50 mg l-1) could be reliably estimated. In this study, we developed a semi-empirical radiative transfer (SERT) model with physically based empirical coefficients to estimate SSC from MERIS data over turbid waters with a much wider range of SSC. The model was based on the Kubelka–Munk two-stream approximation of radiative transfer theory and calibrated using datasets from in situ measurements and outdoor controlled tank experiments. The results show that the sensitivity and saturation level of remote-sensing reflectance to SSC are dependent on wavelengths and SSC levels. Therefore, the SERT model, coupled with a multi-conditional algorithm scheme adapted to satellite retrieval of wide-range SSC, was proposed. Results suggest that this method is more effective and accurate in the estimation of SSC over turbid water

    Simulataneous retrieval of surface parameters by model inversion

    Get PDF

    Retrieval of canopy component temperatures through Bayesian inversion of directional thermal measurements

    Get PDF
    Evapotranspiration is usually estimated in remote sensing from single temperature value representing both soil and vegetation. This surface temperature is an aggregate over multiple canopy components. The temperature of the individual components can differ significantly, introducing errors in the evapotranspiration estimations. The temperature aggregate has a high level of directionality. An inversion method is presented in this paper to retrieve four canopy component temperatures from directional brightness temperatures. The Bayesian method uses both a priori information and sensor characteristics to solve the ill-posed inversion problem. The method is tested using two case studies: 1) a sensitivity analysis, using a large forward simulated dataset, and 2) in a reality study, using two datasets of two field campaigns. The results of the sensitivity analysis show that the Bayesian approach is able to retrieve the four component temperatures from directional brightness temperatures with good success rates using multi-directional sensors (Srspectra˜0.3, Srgonio˜0.3, and SrAATSR˜0.5), and no improvement using mono-angular sensors (Sr˜1). The results of the experimental study show that the approach gives good results for high LAI values (RMSEgrass=0.50 K, RMSEwheat=0.29 K, RMSEsugar beet=0.75 K, RMSEbarley=0.67 K); but for low LAI values the results were unsatisfactory (RMSEyoung maize=2.85 K). This discrepancy was found to originate from the presence of the metallic construction of the setup. As these disturbances, were only present for two crops and were not present in the sensitivity analysis, which had a low LAI, it is concluded that using masked thermal images will eliminate this discrepanc
    • …
    corecore